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ABSTRACT

We present Doubly Robust Monte Carlo Tree Search (DR-MCTS), an algorithm
that integrates doubly robust off-policy estimation into MCTS to improve sample
efficiency. Our hybrid estimator combines Monte Carlo rollouts with DR estima-
tion through a variance-minimizing weight computed online. Unlike biased boot-
strapping methods that sacrifice asymptotic correctness, DR-MCTS achieves vari-
ance reduction while preserving unbiasedness. Unlike entropy-based approaches
that exhibit domain-dependent performance, DR-MCTS demonstrates consistent
improvements across diverse settings including game playing, mathematical rea-
soning, and embodied planning. The benefits are particularly pronounced in LLM-
augmented environments where each simulation is computationally expensive,
making DR-MCTS well-suited for the growing class of language-model-guided
planning applications.

1 INTRODUCTION

Monte Carlo Tree Search (MCTS) has emerged as a powerful approach for sequential decision-
making, demonstrating remarkable success in domains ranging from game playing (Browne et al.,
2012; [Silver et al., 2016)) to enhancing the reasoning capabilities of Large Language Models (Yao
et al. [2023; [Zhou et al.l [2024). Central to MCTS is the estimation of state values, where lower
variance enables more reliable action selection: with high-variance estimates, the algorithm may
incorrectly identify suboptimal actions as best, wasting computational budget on poor branches.
This challenge intensifies as sampling costs grow, particularly in LLM applications where each
node expansion may involve expensive model queries.

A key consideration in MCTS is whose value we estimate. Standard rollouts sample from a behavior
policy (often uniform random or heuristic-guided), but we ultimately care about the value under
the rarget policy—the greedy policy derived from current Q-estimates. When behavior and target
policies diverge significantly, naive Monte Carlo estimates become biased proxies for the quantity of
interest, potentially leading to suboptimal decisions even with many samples. Off-policy correction
addresses this mismatch, ensuring our estimates reflect the policy we intend to execute.

Existing approaches to improving MCTS sample efficiency have pursued several strategies: entropy-
based exploration (Xiao et al.,2019; Painter et al.,[2023)), alternative backup strategies (Khandelwal
et al.,|2016), and structural state sharing (Grosse et al.,2021). Methods like MaxMCTS reduce vari-
ance through biased value bootstrapping, but sacrifice the unbiasedness that guarantees asymptotic
correctness—a trade-off that proves problematic in sparse-reward domains. Meanwhile, AlphaZero-
style approaches (Silver et al.| |2017) replace rollouts entirely with learned value functions, but the
neural network estimates themselves exhibit variance that propagates through the search tree.

We introduce MCTS-DR, an algorithm that integrates Doubly Robust (DR) off-policy estimation
into MCTS to achieve variance reduction while preserving unbiasedness. Our approach employs a
hybrid estimator that combines traditional MCTS rollouts with DR estimation through a variance-
minimizing weight computed online from empirical statistics. The key insight is that neither esti-
mator dominates across all conditions: MCTS rollouts provide stable estimates but ignore policy
mismatch, while DR estimation corrects for distributional shift but suffers from importance weight
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explosion when policies diverge significantly. By optimally combining both, MCTS-DR achieves
variance below either component alone.

Our contributions are as follows:

1. We introduce MCTS-DR, the first algorithm integrating doubly robust off-policy estimation
into MCTS through an adaptive hybrid estimator with variance-minimizing weights.

2. We establish theoretical guarantees proving that the hybrid estimator is unbiased for any
mixing coefficient, and that the optimal weight achieves variance no greater than either
component estimator. We further show how variance reduction translates to improved ac-
tion selection probability and reduced sample complexity.

3. We conduct extensive evaluation across four domains with different characteristics: Go
(sparse rewards, large action space), Atari (dense rewards), GSM8K mathematical reason-
ing (LLM policies), and VirtualHome (compositional planning). MCTS-DR achieves con-
sistent improvements across all domains, demonstrating robustness where baselines exhibit
domain-dependent performance. Notably, MCTS-DR provides complementary benefits
even when combined with neural network value functions, outperforming AlphaZero-style
baselines.

1.1 RELATED WORK

Our work draws from two primary research streams: advances in Monte Carlo Tree Search and
off-policy evaluation techniques in reinforcement learning.

Monte Carlo Tree Search. Since its introduction by |Coulom/(2006), MCTS has become a funda-
mental algorithm for sequential decision-making, achieving notable success across diverse domains
(Silver et al 2016} 2018}, [Schrittwieser et al.l 2020). Recent work has pursued sample efficiency
through several complementary approaches.

Entropy-based methods modify the exploration-exploitation balance during search. |Xiao et al.
(2019) introduced Maximum Entropy Monte-Carlo Planning (MENTS), achieving exponential con-
vergence rates through softmax backpropagation, though the entropy objective can conflict with
reward maximization. [Painter et al.| (2023) addressed this with Boltzmann Tree Search (BTS) and
Decaying ENtropy Tree-Search (DENTS), which gradually transitions from exploration to exploita-
tion.

Alternative backup strategies offer another avenue for improvement. [Khandelwal et al.| (2016)) sys-
tematically analyzed complex backup strategies from the RL literature applied to MCTS, proposing
MaxMCTS variants that use A-returns and take the maximum over Monte Carlo returns and boot-
strapped value estimates. While MaxMCTS can reduce variance through biased bootstrapping, it
sacrifices the unbiasedness that guarantees asymptotic correctness, a trade-off that proves problem-
atic in sparse-reward domains where biased estimates cannot self-correct.

Structural approaches exploit similarities across the search space. |Grosse et al.| (2021) proposed
Probabilistic DAG Search, using jointly Gaussian models to share information across states. Borges
& Oliveira (2021) explored utilizing the off-policy data naturally generated during MCTS explo-
ration.

Off-Policy Evaluation and Doubly Robust Methods. The doubly robust (DR) framework, origi-
nating in causal inference (Robins & Rotnitzkyl [1995), addresses the high variance of importance
sampling (Precup et al., [2000) by combining IS with direct value estimation. [Dudik et al.| (2011)
first applied DR to contextual bandits; Jiang & Li| (2016) extended it to sequential RL, establish-
ing theoretical foundations. Subsequent refinements include weighted DR estimators (Thomas &
Brunskill, 2016)), the More Robust Doubly Robust estimator (Farajtabar et al., 2018)), and double
reinforcement learning (Kallus & Uehara, [2020).

Our Contribution. MCTS-DR represents the first direct integration of doubly robust estimation
into MCTS. Unlike entropy-based methods that modify exploration strategy, or MaxMCTS which
reduces variance through biased bootstrapping, we achieve variance reduction while preserving un-
biasedness through our hybrid estimator with variance-minimizing weight 5*. As illustrated in Fig-
ure [T} while standard MCTS relies solely on Monte Carlo sampling during simulation, DR-MCTS
employs this hybrid estimator to achieve more accurate value estimates with fewer samples.
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Figure 1: Monte Carlo Tree Search phases. Standard MCTS uses pure Monte Carlo rollouts in
the simulation phase, while DR-MCTS employs a hybrid estimator combining MCTS rollouts with
doubly robust off-policy estimation.

1.2 BACKGROUND
1.2.1 MARKOV DECISION PROCESSES

We formalize our problem setting as a Markov Decision Process (MDP), defined by the tuple M =
(S, A, P,R,v). Here, S and A represent the state and action spaces respectively, while P : S x A x
S — [0, 1] captures the transition dynamics, with P(s’|s, a) denoting the probability of transitioning
to state s” after taking action a in state s. The reward function R : S x A — R assigns immediate
rewards R(s, a) to state-action pairs, and 7y € [0, 1] serves as the discount factor for future rewards.

A trajectory through this MDP unfolds as a sequence 7 = (sg, ag, 7o, S1,01,71, - .-, SH ), Where
each reward r, = R(s, a;) follows from the corresponding state-action pair. An agent’s behavior
is governed by a policy 7 : S — A(A), which maps states to probability distributions over actions.
The fundamental objective is to find a policy that maximizes the expected cumulative discounted

reward:
H

Z ’Ytrt

t=0

V7(s) =E,

S0 :31 @))

Many practical domains, including board games like Go and simulated environments like Virtu-
alHome (Puig et al.| 2018)), exhibit sparse reward structures where feedback occurs primarily at
terminal states. This sparsity presents a significant challenge for value estimation, as intermediate
actions receive no immediate signal about their quality.

1.2.2 MONTE CARLO TREE SEARCH

Monte Carlo Tree Search addresses the challenge of decision-making in large state spaces through
selective sampling and incremental tree construction (Browne et al.| 2012)). Rather than exhaus-
tively exploring all possibilities, MCTS focuses computational resources on promising regions of
the search space through an iterative four-phase process.
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The algorithm begins with selection, traversing from the root to a leaf node by balancing exploration
of uncertain branches with exploitation of promising ones. We implement this trade-off using the
Predictor Upper Confidence Trees (PUCT) criterion (Rosin, 2011} Silver et al., 2017):

, N(s)
a” = argmax (Q(s, a) + cmp(als) T+ NGs, a)) (2)
This formula elegantly combines the estimated action value (Q(s, a) with an exploration bonus that
decreases as the state-action pair (s, a) is visited more frequently, where N(s) and N(s,a) track
visit counts and ¢ controls the exploration-exploitation balance. The prior policy 7 (als) biases
exploration toward promising actions; in our experiments, this is either uniform (Go), derived from
an LLM policy model (VirtualHome), or based on reasoning heuristics (GSMS8K).

Upon reaching a leaf, the expansion phase adds new child nodes to grow the tree. The crucial
simulation phase then estimates the leaf’s value through Monte Carlo rollouts:

N(s)

Vaers (s Z Ri( 3)

where each R;(s) represents the cumulative reward from an independent simulation starting at state
s. Finally, backpropagation updates the statistics of all nodes along the traversed path, propagating
the new information toward the root.

While this Monte Carlo approach provides unbiased estimates, it can suffer from high variance,
particularly when simulations are expensive or limited.

1.3 OFF-PoLICY EVALUATION METHODS

The challenge of estimating a policy’s value using data collected under a different policy arises
naturally in MCTS, where the tree policy used for exploration differs from the target policy we
ultimately wish to evaluate. Off-policy evaluation methods provide principled approaches to this
mismatch.

1.3.1 IMPORTANCE SAMPLING

Importance Sampling (IS) corrects for the distribution mismatch between behavior policy 7, and
target policy 7. through density ratios (Precup et al., |2000). For each timestep, we compute the
importance weight p; = 7.(a¢|s;)/mp(at|st), which reweights the observed data to match what
would have been observed under the target policy. The step-wise IS estimator accumulates these
weighted rewards:

H-1
itep IS Z Y P1:tTt (4)
t=0

where py.4 = H2:1 pr, represents the cumulative importance weight. While this approach provides
unbiased estimates under mild conditions, the variance can become prohibitive when the behavior
and target policies diverge significantly.

1.3.2 DOUBLY ROBUST ESTIMATION

Doubly Robust estimation elegantly addresses the high-variance limitation of IS by incorporating a
baseline function that reduces variance without introducing bias (Jiang & Li,2016). The key insight
is to combine importance sampling with direct value function approximation:

H-1
Vor(s) = V() + 3 2*pue (11 49V (s11) = Qlsvnar)) )

t=0

This formulation starts with a baseline estimate V(s) and adds a correction term that accounts for
the discrepancy between observed rewards and predicted values. Crucially, the estimator remains



Preprint. Under review.

unbiased if either the importance weights are correct or the value function approximations are ac-
curate—hence the term “doubly robust.” This robustness property makes DR estimation particularly
attractive for complex domains where perfect models are unattainable.

To further reduce bias in finite-sample settings, we employ cross-validation when estimating

Q(s¢,a¢) (Chernozhukov et al., 2018), preventing overfitting to the limited data available within
each MCTS node. This combination of robustness and practical bias reduction techniques forms the
foundation of our DR-MCTS algorithm.

2 METHODS

2.1 DoOUBLY ROBUST MONTE CARLO TREE SEARCH

Our DR-MCTS algorithm enhances the standard MCTS framework by introducing a variance-
minimizing hybrid estimator that adaptively combines Monte Carlo rollouts with doubly robust off-
policy evaluation. The core innovation lies in dynamically adjusting the mixture weights based on
empirical variance statistics, allowing the algorithm to optimally balance different sources of value
information.

The hybrid estimator takes the form:
Viybrid (8) = B(s, @) Vmcrs(s) + (1 — B(s, a))Vor(s) (6)

where 3(s,a) € [0,1] determines the relative contribution of each component. Rather than us-
ing a fixed or heuristically-decaying weight, we compute (s, a) online to minimize the combined
estimator’s variance.

The key to our approach is the adaptive computation of 3(s, a) based on observed variance statistics.
For each state-action pair, we maintain online estimates of the variances and covariance of the two
estimators. The variance-minimizing weight is then computed as:

B* (S CL) _ Var(VDR) — COV(VMCTs, VDR)
’ Val‘(VMCTs) + Var(VDR) — QCOV(VMCTs, VDR)

where the variance and covariance terms are estimated online using a sliding window of recent
samples. When insufficient data is available for reliable variance estimation (typically in the first
few visits), we fall back to an exponentially decaying heuristic:

Bratback (5, @) = Bpase - €xp(=A - N(s,a)) ®)

This ensures reasonable behavior during the initial exploration phase while transitioning to optimal
variance-based weighting as data accumulates.

)

To compute the hybrid estimator in practice, we first calculate the value function estimate V(s)
using Equationand the Q-value estimates Q(st, a) using Equation These estimates are then
substituted into the doubly robust estimator Vpr(s) in Equation Finally, the hybrid estimator
Viybria($) in Equation@combines the standard MCTS rollout value Vycrs(s) with the doubly robust
estimate Vpg(s) using the adaptive weighting parameter 3(s, a).

The target policy 7. for importance sampling is derived from current Q-value estimates using a
softmax distribution:
exp(Q(s, a))

> exp(Q(s, a’))

We considered alternative target policies including e-greedy, visit-count-based (7. (a|s) o< N(s, a)),
and UCB-based formulations. In ablation studies (Table[8), softmax consistently outperformed these
alternatives, likely because it provides smooth probability gradients that yield more stable impor-
tance weights while still concentrating mass on high-value actions. The behavior policy m(als)
varies by domain as detailed in Appendix [C|

9)

me(als) =

We estimate the value function as a weighted average over child nodes:
N (s,a)

V(s) = Zwe(a|s) : m ; Ri(s,a) (10)
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where R; (s, a) denotes the i-th return observed from taking action a in state s.

For action-value estimation, we employ k-fold cross-validation to reduce overfitting bias:

Q(st, ar) KZ| > Ri(si,ar) (11)

zEDk
where the data is partitioned into K folds, with each fold Dj, providing an independent estimate.

The complete DR-MCTS algorithm is provided in Algorithm[I]in the Appendix.

2.2 THEORETICAL ANALYSIS

Our theoretical analysis establishes how variance reduction in value estimation translates to im-
proved decision-making performance. We first present foundational properties of our hybrid esti-
mator, then derive our main results connecting variance reduction to action selection quality and
sample complexity.

Corollary 2.1 (Unbiasedness of Hybrid Estimator). The hybrid estimator Viypia(s) =
B(s,a)Vucrs(s) + (1 — B(s,a))Vpr(s) is unbiased for estimating the value of the target policy
m for any (s, a) € [0, 1].

Proof Sketch. Since both Vycrs(s) and Vpr(s) are unbiased estimators of V™ (s) (Jiang & Li,
2016), any convex combination preserves unbiasedness by linearity of expectation. See Ap-
pendix [B.T]for details. O

Corollary 2.2 (Variance-Minimizing Weight). The optimal mixing coefficient that minimizes
Var(Vigbria(s)) is:

Var(VDR) — COV(VMCTs, VDR)
Var(VMcrs) + Var(VDR) — 2COV(VMCTs, VDR)

B*(s,a) = (12)

and the resulting variance satisfies Var(V,y,,..,) < min{Var(Vicrs), Var(Vpr)}.

Proof Sketch. This follows from the classical result on optimal linear combinations of correlated
estimators (Graybill & Deall [1959). The optimal weight is obtained by differentiating the variance
of the convex combination with respect to 3 and setting the derivative to zero. See Appendix
for the full derivation. ]

We now present our main contributions: theorems establishing how variance reduction leads to
measurable improvements in decision quality.

Definition 2.3 (Value Gap). For state s with optimal action a* = argmax, Q*(s, a), define the
value gap as Anin(s) = mingq+[Q*(s,a*) — Q*(s,a)].

Theorem 2.4 (Variance Reduction Improves Action Selection). Let Ql(s, a) and Qg(& a) be un-
biased Q-value estimators with variances o%(s,a) and o3(s,a) respectively, where o3(s,a) <

02(s,a) for all (s,a). Define the probability of selecting the optimal action as R,(p,)( ) =

P (arg max, Q;(s,a) = a*).
Then for any state s with value gap Apin(s) > 0:
2 1
iyl (s) 2 Pyl (s) (13)
with strict inequality when o3 (s, a) < o%(s, a) for at least one action a.

Furthermore, under Gaussian approximation, the improvement is lower bounded by:

Pyl (s) = Poyl (5) > @ (%g) - (W) (14)

where ®(-) is the standard normal CDF and o; = max, 0;(s, a).
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Proof Sketch. The key insight is that selecting the optimal action requires correctly ranking Q(s7 a*)
above all suboptimal actions. For unbiased estimators, the probability of misranking two actions is
bounded by the ratio of estimation variance to the squared value gap (via Chebyshev’s inequality).
Lower variance directly reduces misranking probability. The Gaussian bound follows from the CLT
applied to averaged rollout returns. See Appendix for the complete proof. O

Remark 2.5. This result connects to the best-arm identification literature (Kaufmann et al.| |2016)),
where sample complexity depends on the gap between arm means and the estimation variance. Our
contribution is showing this relationship holds within MCTS when comparing estimators of different
variance.

Theorem 2.6 (Sample Complexity Improvement). Consider an MCTS algorithm requiring N1 sim-
ulations to achieve P(,,,,(s) > 1— 0 for selecting the optimal action. Let DR-MCTS achieve variance
reduction factor p = Var(Viypria)/Var(Vucrs) < 1. Then DR-MCTS achieves the same guarantee
with at most:

No<p-N; (15)

simulations.

More precisely, to achieve optimal action selection probability 1 — ¢ in a state with value gap Ay,
MCTS requires:

2
Urollou ‘A|
Nyers = O <A12111nZ log 5 (16)
while DR-MCTS requires:
o2 A
Npryucrs = O (pA2mll(mt log 5|> 17

Proof Sketch. By the CLT, MCTS Q-value estimation variance scales as 02,../N. To ensure the
optimal action is selected with probability > 1 — 4, the estimation error must be smaller than half
the value gap with high probability. Applying Hoeffding’s inequality with a union bound over |A|
actions yields the stated sample complexity. Since DR-MCTS achieves variance p- Var(Vyicrs) with
p < 1, the sample complexity reduces proportionally. See Appendix for details.

Remark 2.7. The O(0? /A% log(|A|/d)) form matches the PAC sample complexity bounds for best-
arm identification in multi-armed bandits (Even-Dar et al., 2006; Kaufmann et al.,|2016)), confirming
that our bounds are tight up to constants.

3 EXPERIMENTS AND RESULTS

We evaluate MCTS-DR across four domains spanning different reward structures, action spaces,
and planning horizons: Go (sparse rewards, large branching factor), Atari (dense rewards), GSM8SK
mathematical reasoning (LLM-based policies), and VirtualHome household tasks (compositional
planning). Detailed domain descriptions are provided in Appendix [E.T} with hyperparameter con-
figurations in Table 5]

Our evaluation compares MCTS-DR against baselines representing different approaches to value
estimation and exploration. Table 4] summarizes which baselines are evaluated in each domain.

Core baselines (all domains). MCTS with pure Monte Carlo rollouts serves as the primary base-
line. DR uses only the model-based DR estimator without MCTS rollouts, isolating the contribution
of importance-weighted corrections. MCTS-IS replaces DR with step-wise importance sampling
(Equationd)) in our hybrid formulation, enabling direct comparison between DR and IS corrections.

Variance reduction and exploration baselines (Go, Atari, GSM8K). MaxMCTS (Khandelwal
et al., [2016) reduces variance through biased value bootstrapping, representing an alternative ap-
proach that sacrifices unbiasedness for variance reduction. We also compare against entropy-based
exploration methods: MENTS (Xiao et al., 2019), BTS, and DENTS (Painter et al., [2023). These
baselines are excluded from VirtualHome due to API budget constraints. For GSM8K, we also con-
sidered rStar-Math (Guan et al., 2025), a recent self-evolution approach for mathematical reason-
ing; however, our implementation failed to solve any problems within a 30-hour budget, rendering
it impractical for our sample efficiency comparison.
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Table 1: Elo ratings across Go and Atari domains ordered by performance. Go-NN uses neural
network value functions.

Go Go-NN Atari
Algorithm Elo Algorithm Elo Algorithm Elo
MCTS-DR 19968 MCTS-DR 1542.1 MCTS-DR 21353

MCTS 1899.1 AlphaZero 14579 MaxMCTS 2132.8
DR 1704.6 DENTS 17571
MCTS-IS 1697.1 DR 1715.4
BTS 1417.8 BTS 1457.2
MENTS 1294.1 MENTS 1226.3
DENTS 1195.0 MCTS-IS 1053.4
MaxMCTS  795.5 MCTS 906.4

Neural network baselines (Go only). To test whether learned value functions obviate the need for
DR corrections, we include an AlphaZero-style baseline using a lightweight convolutional neural
network with residual blocks for leaf evaluation, eliminating rollouts. This is not a full AlphaZero
reproduction (Silver et al., [2017), but isolates neural value estimation. MCTS-DR + NN applies
our hybrid estimator on top of neural network predictions, testing whether DR corrections provide
complementary benefits when base estimates come from a trained model. These baselines are ex-
cluded from LLM-guided domains (GSMS8K, VirtualHome) because the LLM itself serves as the
learned value function, and the associated API costs make extensive neural baseline comparisons
impractical.

Go. On the 5x5 board with 100 rollouts per move, MCTS-DR achieves the highest Elo rating
(1996.8) among all methods, outperforming standard MCTS (1899.1) by approximately 100 Elo
points, corresponding to a 64% expected win rate. The improvement is consistent with Theorem[2.4]
Reduced estimation variance yields higher probability of selecting optimal moves, and these gains
compound over the ~80 moves in a typical game. Notably, MaxMCTS collapses to Elo 795.5
despite its strong theoretical motivation for variance reduction through biased bootstrapping. In
sparse-reward games where terminal outcomes dominate, biased value estimates cannot self-correct
during search, whereas our unbiased hybrid estimator preserves asymptotic correctness while re-
ducing finite-sample variance. When augmented with neural network value functions, MCTS-DR
(1542.1) continues to outperform AlphaZero-style MCTS (1457.9), indicating that the DR compo-
nent provides complementary variance reduction beyond learned value approximations.

Atari. The dense reward structure of Atari games presents a contrasting environment where boot-
strapped value estimates receive frequent corrective signals. Here, MaxMCTS recovers to competi-
tive performance (Elo 2132.8), nearly matching MCTS-DR (2135.3). This domain also reveals the
limitations of pure importance sampling: MCTS-IS drops to Elo 1053.4, suffering from the variance
explosion that occurs when behavior and target policies diverge. MCTS-DR’s hybrid formulation
effectively hedges between these failure modes, achieving robust performance regardless of whether
the domain favors MCTS-style rollouts or model-based corrections.

GSMBS8K. Mathematical reasoning with LLM policies provides a direct test of variance reduction
benefits. MCTS-DR achieves 90.2% accuracy compared to 84.1% for MCTS-IS, 83.8% for MCTS,
and 80.0% for pure DR. The Q-value variance measurements reveal the underlying dynamics:
MCTS exhibits variance 2.62, while the hybrid estimator achieves 2.38, which is below both com-
ponents, as guaranteed by Corollary [2.2] Notably, MCTS-IS achieves higher accuracy than MCTS
despite substantially higher variance (11.49). This reflects the value of importance sampling correc-
tion for policy mismatch. When LLM sampling temperature induces divergence between behavior
and target policies, IS provides corrective signal that outweighs its variance penalty. However, pure
DR’s 80.0% accuracy (variance 14.52) shows that importance weight explosion eventually domi-
nates. MCTS-DR captures both benefits, the policy-correcting signal from DR and the stability of
MCTS when weights explode. In addition, the simulation efficiency (successes per total simulation)
further validates Theorem [2.6] MCTS-DR achieves 3.0% efficiency compared to 2.8% for MCTS,
extracting more correct solutions from the same computational budget.



Preprint. Under review.

Table 2: Performance comparison of MCTS variants on GSM8K reasoning tasks (N=500), ordered
by accuracy. Wilson 95% confidence intervals shown in parentheses.

Method Accuracy (%) Q-value Var. Simulation Eff. (%)
MCTS-DR 90.2 (87.3-92.5) 2.38 3.0
MCTS-IS 84.1 (80.5-87.0) 11.49 2.8
MCTS 83.8 (80.3-86.8) 2.62 2.8
DR 80.0 (76.3-83.3) 14.52 2.7
MAXMCTS 75.0 (71.0-78.6) 5.12 2.5

VirtualHome. Compositional household tasks require sequential decisions over K =~ 8-12 steps,
providing a test of how per-step improvements accumulate. On novel compositional tasks, MCTS-
DR achieves 56.5% success compared to 34.8% for IS-MCTS and 19.0% for standard MCTS. The
threefold improvement over MCTS aligns with the (1+ €)* compounding predicted by Corollary 3.
Even modest per-step gains in optimal action selection probability multiply over the planning hori-
zon. Table Q| reveals that VirtualHome achieves 88.8% usage of the variance-minimizing £*, com-
pared to 56.5% in Go. This difference reflects the action space structure: LLM-guided policies
in VirtualHome concentrate rollouts on promising actions, enabling reliable variance estimation,
whereas Go’s large branching factor (~361 legal moves) spreads visits thinly and triggers more
frequent fallback to the heuristic 3 = 0.5. Despite this, MCTS-DR’s fallback mechanism ensures
stable performance across both regimes.

Table 3: Success rates on VirtualHome tasks. DR-MCTS shows best performance across Spase
configurations. 95% Wilson confidence intervals provided.

Task Category MCTS IS-MCTS DR-MCTS
Novel Simple (123 tasks) 85.4% 95.1% 95.9%
[78.2,90.6] [89.6,97.8] [90.7,98.3]
Novel Objects (34 tasks) 23.5% 38.2% 41.2%
[12.5,39.9] [23.9,54.9] [26.3,57.9]
Novel Compositional (23 tasks) 19.0% 34.8% 56.5%

[7.7,39.5] [18.8,55.1] [36.8,74.4]

4 DISCUSSION AND CONCLUSION

We presented MCTS-DR, an algorithm that integrates doubly robust off-policy estimation into
Monte Carlo Tree Search through a variance-minimizing hybrid estimator. Our theoretical analysis
shows that this combination preserves unbiasedness while achieving variance below either com-
ponent alone, which translates directly to better action selection and improved sample efficiency.
Across four domains, MCTS-DR consistently outperforms or matches the best baseline, whereas
other methods show uneven results. MaxMCTS excels in dense-reward Atari but collapses in sparse-
reward Go due to its reliance on biased bootstrapping. MCTS-IS performs well in LLM-guided
domains (GSMS8K, VirtualHome) where correcting for policy mismatch matters, but struggles in
game domains where importance weight variance overwhelms the correction signal. MCTS-DR in-
herits the benefits of both worlds, the stability of MCTS rollouts and the policy-correcting power of
importance sampling, while avoiding their respective failure modes. This robustness is particularly
relevant for today’s tree search applications over LLM queries, where each node expansion incurs
substantial cost and practitioners cannot afford to discover post-hoc that their chosen algorithm fails
on the problem at hand. Our approach has limitations: the variance-minimizing weight requires
sufficient visit counts, and our AlphaZero comparison uses a lightweight network. Nevertheless,
the complementary gains observed when combining MCTS-DR with neural value functions suggest
that doubly robust estimation addresses a source of variance orthogonal to learned approximations, a
property that should prove valuable as tree search methods become standard infrastructure for LLM
reasoning and planning.
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5 REPRODUCIBILITY

Hyperparameters used to reproduce experiment results are detailed in Appendix [E} Computational
resources, training time, and hardware specifications needed for replication are detailed in Ap-
pendix [G.T} All code and data will be made publicly available upon publication.

6 USEOFLLM

Large Language Models were used in two capacities in this work. First, as integral components
of our experimental pipeline: GPT-40-mini serves as a world model for GSM8K and VirtualHome
experiments, and GPT-40 provides policy priors for VirtualHome planning. Second, LLMs were
used to correct grammar errors and polish writing in this manuscript. All experimental design,
methodology, analysis, interpretation of results, and scientific conclusions are the original work of
the authors.
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A APPENDIX

B PROOFS FOR THEORETICAL ANALYSIS
This appendix provides complete proofs for the theoretical results stated in Section

B.1 PROOF OF COROLLARY [2.T] (UNBIASEDNESS)

Proof. Let Vicrs(s) and Vpr(s) be two estimators of V' 7<(s), the value function under the target
policy 7. By assumption, both estimators are unbiased:

E[Vmcrs(s)] = V7™ (s) (18)
E[Vbr(s)] = V7™ (s) (19)

The unbiasedness of Vycrs(s) follows from the fact that MCTS rollouts sample trajectories accord-
ing to the target policy and average the returns. The unbiasedness of Vpr(s) is established in Jiang
& Li/(2016)), Theorem 1.

For the hybrid estimator with any 3(s, a) € [0, 1]:

E[Vaybria(s)] = E[B(s, ) Vacrs(s) + (1 — B(s, a)) Vor(s)] (20)
= (s, a)E[Vmcrs(s)] + (1 — B(s,a))E[Vpr(s)] (linearity of expectation) (21)
= ( ;a)V7e(s) + (1= B(s,a)) V7 (s) (22)
= V7 (s) (23)

This holds for any fixed 3(s,a) € [0, 1], including the data-dependent 8* computed from sample
variances, provided 8* is computed independently of the data used to form the final estimate (e.g.,
via sample splitting or cross-validation). O

B.2  PROOF OF COROLLARY [2.2](VARIANCE-MINIMIZING WEIGHT)

Proof. Let o3, = Var(Vymers), 0%, = Var(Vpr), and o7 p = Cov(Vaers, Vor)-

The variance of the hybrid estimator is:

Var(Vigbria) = Var(8Vmers + (1 — 3)Vor) (24)
= f2oh + (1= B)*0h +28(1 = B)omn (25)
Expanding:
Var(V}lybrid) = 520']%[ + U% — 250% + ﬁ20'% + 260—MD — 262(7MD (26)
Collecting terms:
Var(Viybia) = B2(0%; + 0% — 20mp) + B(20mp — 20%) + 0% (27)

This is a quadratic in 8. To find the minimum, we differentiate with respect to 5 and set equal to
Zero:

)
%Var(vhybﬂd) =2B(c3, + 0% — 200mp) +2(0mp — 0%) =0 (28)

Solving for 3:

2
. 0h — OMD
= (29)
b 0'%/]+U2D—20'1\/[D

This is well-defined when 012\/1 + 0123 — 20 p # 0, which holds unless Viyycrs and Vpg are perfectly
correlated with equal variance.

Verification that 3* € [0, 1]:
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* The denominator 03, + 0%, — 20 p = Var(Vimers — Vor) > 0
¢ 3* > 0 when 0% > o p, which holds when Cov(Visers, Vor) < Var(Vpr)

e B* <1wheno? —oyp < 03 + 0% — 200D, i.e., when opp < 03,

When these conditions fail, the optimal £ is at a boundary (0 or 1).

Minimum variance guarantee: Substituting 3* back into the variance formula:

(65 —omp)?
Var(Vi5 ) = 0% — (30)
( hybrld) D O,JQW_’_O_QD —20MD

oh(os +0b —20mp) — (0 — omp)?

= 31
UJQVI + O’% —20MD
_ 012\402D — 0—12V[D (32)
o3+ 0% —20mD
To show Var(Viiq) < 05
2 2 2
0%,0h — 03,
JMIDZIMD_ < 52 (33)
oy top —20MD
Cross-multiplying (the denominator is non-negative):
012\/10123 — 0]2\4,3 < 0123012\4 + 0;‘5 — 20'2DO'MD (34)
This simplifies to:
0§04D—2U%JMD+0'12\4D:(U%—JMD)z (35)
which always holds. The proof for Var(V;% .4) < o3, is symmetric. O

B.3 PROOF OF THEOREM [2.4] (ACTION SELECTION IMPROVEMENT)

Proof. We prove the theorem in two parts: (1) the general inequality using Chebyshev’s bound, and
(2) the Gaussian quantification.

Part 1: General Inequality

Consider two actions a* (optimal) and a (suboptimal) with true values Q* (s, a*) > Q*(s, a), where
A(s,a) = Q*(s,a*) — Q*(s,a) > 0.

For estimator i, the probability of correctly ranking these two actions is:
P(Qi(s,a*) > Qi(s,a)) = P(Qy(s,a*) — Qi(s,a) > 0) (36)
Since both estimators are unbiased:
E[Qi(s,a") = Qi(s,a)] = Q*(s,a") — Q"(s,a) = A(s,a) > 0 37)
Define Z; = Q;(s,a*) — Qi(s,a) — A(s,a). Then E[Z,;] = 0 and:

Var(Z;) = Var(Qi(s,a*) — Qi(s, a)) < U?(s,a*) + a?(s, a) = 6% (38)

where equality holds when the estimates are independent across actions (as in MCTS with separate
rollouts).

Misranking occurs when Q; (s, a*) — Q;(s,a) < 0, i.e., when Z; < —A(s, a).

By Chebyshev’s inequality:

P(Zi < =A(s,a)) = P(Z; - E[Z,] < —A(s,a)) < P(|Zi] 2 A(s,a)) < =5 (39)
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Therefore, the probability of correct pairwise ranking is:

R N 52

P(Qi(s,a") > Qi(s,a)) > 1 — m (40)

Since 03(s,a) < o3(s,a) for all (s,a), we have 63 < 5%, and thus:

P(correct ranking with estimator 2) > P(correct ranking with estimator 1) 41)

For selecting the optimal action among all | A| actions, we need a* to be ranked above all suboptimal
actions. Using a union bound over all |A| — 1 pairwise comparisons:

=2 2
@Dy > 1 _ o; o1 (|A] = 1) - 207
PO(s) > 1 YO Ak WA (42)

where o; = max, 0;(s,a).

Since o9 < o7, we obtain PO(;)(S) > Po(plt)(s).

Part 2: Gaussian Quantification

When the number of rollouts is large, by the Central Limit Theorem, Qz(s, a) is approximately
Gaussian:

Qi(saa) NN(Q*(S,(I),O'IZ(S,CL)) (43)

For independent estimates across actions, the difference is also Gaussian:

Qi(s,a") — Q,-(s, a) ~ N(A(s,a), af(s, a*) + a?(s,a)) (44)

The probability of correct pairwise ranking is:

A . A Qi(s,a*) — Qi(s,a) — A(s, a) —A(s,a)
P AGE AGE =P
(Qi(s,a*) > Qi(s,a)) ( N T > N +Ji2(s,a)>
(45)
A(s,a)
= 46
<\/af(s,a*)+0§(s,a)> (30)
Using the worst-case bounds A(s, a) > Apin(s) and 02(s,a*) + 02(s,a) < 202:
P(correct pairwise ranking) > ® (A\r;g;(j)> 47)

Since @ is monotonically increasing and o2 < 07

Amin AInin
P ((3)> > ((S)) (48)
V209 V20,
The improvement in optimal action selection probability is thus bounded below by:
Amin(s) Amin(s)
P(2) s) — P(l) s) > (I)( min ) _® ( min 49
o ()~ Bl () 2 @ { S v “9)

This bound is achieved in the two-action case and provides a conservative lower bound for larger
action spaces. O
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B.4 PROOF OF THEOREM[2.6] (SAMPLE COMPLEXITY)

Proof. We derive the sample complexity bounds using concentration inequalities, following the
approach of |[Even-Dar et al.[(2006) and [Kaufmann et al.| (2016) for best-arm identification.

MCTS Sample Complexity:

In standard MCTS, Q-values are estimated using sample means of rollout returns. After N total
simulations distributed across actions, the variance of Qumcrs (s, a) scales as:

A 2
Var(Qwmcrs (s, a)) = W 50

where N (s, a) is the number of rollouts for action a and o2

ilout (8, @) s the variance of individual
rollout returns.

For the optimal action to be selected with probability > 1 — §, we need the estimation errors to be
bounded:

A Amin
P(max|Q(s,a)—Q*(s,a)§2> >1-9¢ (51)
Applying Hoeffding’s inequality to each action and a union bound:
A * AInin N S, a A?nin
p(Qtea) @l > 258 <romp (N0
O tollout
For uniform allocation N (s,a) = N/|A| and using the union bound:
A A NAZ,
P (mx Qe - @' (s.)] = S5 ) < 2o (- 7 me ) (53
@ 2 2‘A|Ur20110u1
Setting this < 4 and solving for V:
NAZ,
2|Alexp <r2mn> <é (54)
2|A|0-rolloul
NAZ, ) é
exp [ — min S (55)
( 2|A|U1'2()llout 2|A‘
NA2. 0
—_Tmin < gg (56)
2|A|0-r20llout 2|A|
2[Alogy, 2|4
N > Ai:n U Jog 5 (57)

For non-uniform (optimal) allocation based on the gaps, this can be improved to:

o A
Nycrs = O (A“;”“_“ log '(5> (58)

DR-MCTS Sample Complexity:
For DR-MCTS with variance reduction factor p < 1, the hybrid estimator achieves:

A A . 2
Var(Qorvers(5,0)) = - Var(Qurers(s,0)) = £ .2 59

The effective variance is reduced by factor p. Substituting into the sample complexity derivation:

N ’ Ar2nin
(8(1)2> (60)

rollout
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Following the same analysis:

2|1A4| - p- o2 2|A
Npr-mcrs > 14 Apz R Jog | 5 - p - Nmvcrs (61)
Therefore: )
-0 A
Npr-mcrs = O </W log |5> = p - Numcrs (62)

Interpretation: The sample complexity reduction is proportional to the variance reduction factor
p. For example, if DR-MCTS achieves 50% variance reduction (p = 0.5), it requires only half the
simulations to achieve the same confidence in optimal action selection. [

B.5 CONNECTION TO BEST-ARM IDENTIFICATION LITERATURE

Our sample complexity bounds are closely related to results in the best-arm identification (BAI)
literature. Specifically, Kaufmann et al.| (2016) establish that for Gaussian bandits with arm means

l1,..., g and common variance o2, the sample complexity for identifying the best arm with
probability 1 — 4§ is:
= Y 2 (©3)
- * 2
S (e 1)

In our MCTS setting, each action corresponds to an arm, and the Q-values correspond to arm means.
Our Theorem [2.6] shows that variance reduction directly translates to reduced sample complexity,
consistent with the BAI characterization where complexity scales inversely with the squared gap
and linearly with variance.

The key insight connecting our work to BAI is that DR-MCTS effectively reduces the per-sample
variance, achieving the same effect as having more informative observations without requiring ad-
ditional simulations.

C BEHAVIOR POLICIES

C.1 GO AND GSMS8K BEHAVIOR PoOLICY

For Go and GSM&8K, we implement a uniform behavior policy over all available actions:

1
mp(als) = AGS)) (64)

where A(s) represents the set of legal actions available in state s. This uniform distribution ensures
comprehensive exploration across the action space while serving as a simple baseline for off-policy
evaluation.

C.2 VIRTUALHOME BEHAVIOR POLICY

For the VirtualHome environment, we adapt the approach of [Zhao et al.[ (2023) to leverage Large
Language Models (LLMs) as a heuristic policy. Specifically, we use GPT-4o0 to generate the behavior
policy, guiding action selection in the simulation procedure.

The LLM takes as input:

* K-shot examples from the dataset
* Goal description
 Current observation

* History of actions
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All inputs are translated into English sentences. The LLM then outputs a suggested action plan. To
approximate the policy distribution, we sample the LLM M times, querying it with the prompt and
trajectory history h:

a; ~ LLM(s, prompt) (65)

where «; is the first action of the LLM’s answer.

The prompt examples are selected based on their similarity to the current language instruction ¢.
We use sentence embeddings to calculate the cosine similarity between the current instruction and
instructions #; in the dataset D:

similarity = CosineSim(¢;, ¢) (66)

We select the top K similar instructions and use their corresponding expert trajectories as the K-shot
prompt.

To ensure executability, we represent both the LLM’s suggested actions and the admissible actions as
embeddings and evaluate their cosine similarity. The empirical policy distribution is then formulated
as:

M
p(als) = )\ﬁ + (1 — X\)Softmax {ZCosineSim(ai, a) — 77} (67)

i=1

where 7 is the average value of ), CosineSim(c;, a), | A| is the size of the admissible action space,
and A is a hyperparameter that adds randomness to the policy. This results in a mixture of the
approximated policy from the LLM and a uniform distribution.

D DR-MCTS ALGORITHM

Algorithm [I] presents our DR-MCTS approach. The algorithm initializes a search tree with the root
node representing the initial state and history. For a specified number of iterations, it traverses the
tree using the PUCT selection strategy (Equation [2), balancing exploration and exploitation. When
a new node is reached, it’s added to the tree, and a simulation estimates its value Vycrs. If the DR
estimator is used, Vpr is calculated (Equation E])

The hybrid estimator (Equation [6)) combines these estimates using the variance-minimizing weight
B*(s,a) from Equation[7] This weight is computed online by tracking empirical variances of both
estimators and their covariance through a sliding window of recent samples. When insufficient
samples are available for reliable variance estimation (typically during early visits), the algorithm
falls back to the heuristic weight Spase - exp(—X - N(s,a)) as specified in Equation

The resulting value is backpropagated, updating node statistics. After all iterations, the algorithm
returns the action with the highest estimated value at the root node.

E EXPERIMENTAL SETTINGS AND DETAILS

E.1 DOMAIN DESCRIPTIONS

5x5 Go. We evaluate on 5x5 Go, a domain combining strategic depth with computational tractabil-
ity. Our implementation follows standard Go rules including stone capturing and ko prevention via
Zobrist hashing. The reward structure provides +1.0 for wins and 0.0 for losses, with small inter-
mediate rewards (up to 0.5) for capturing opponent stones. We include 6.5 point komi for White.
Games terminate upon two consecutive passes, reaching 75 moves, or 90% board occupancy. Each
algorithm pair plays 50 games, alternating colors. We report Elo ratings computed via Bradley-Terry
model and win rates with 95% Wilson score confidence intervals.
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Algorithm 1 DR-MCTS Algorithm

Input: state s, history hg, iterations NV
Initialize tree T" with root (sg, ho)
Initialize variance trackers for each node
fori=1to N do
(s, h) 4 (0, ho)
while (s, h) is not terminal and (s, h) is in " do
a < argmax,, PUCT((s, h),a’)
s, h < Apply(s,a),h+a
end while
if (s, h) is not terminal then
Add (s,h) to T
vmers <+ Simulate(s, i)
vpr — ComputeDR(s, h, 7, 7p, Q, V)
Update variance statistics: Var(Vyers), Var(Vor), Cov(Vaiers, Vbr)
if N(s,a) > min_samples then
ﬁ « Var(Vpr) —Cov(Vmcrs, Vor)
Var(Vmcrs ) +Var(Vor ) —2Cov(Vicers,,
else
B < Boase - €xp(—A - N (s, a)) {Fallback heuristic}
end if
v < Bomers + (1 — B)vpr {Hybrid value}
else
v + Reward(s)
end if
while (s, h) is not (s, ho) do
Update statistics for (s, h) in T with v
(s, h) < Parent(s, h)
end while
end for
Return: argmax,Q((so, ho),a)

Vony { Variance-min}

Atari. We evaluate on a subset of Atari games from the Arcade Learning Environment (Bellemare
et al.l 2013) selected to represent diverse reward structures: Pong (sparse, binary outcomes), Break-
out (incremental rewards), and Seaquest (complex, multi-objective rewards). States are represented
as stacked grayscale frames (4x84x84), with actions corresponding to the game-specific discrete
action space. Episodes terminate upon game over or after 10,000 frames. We report Elo ratings and
win rates over 30 episodes per algorithm pair.

GSMS8K Mathematical Reasoning. The GSMS8K dataset (Cobbe et al., [2021) presents grade-
school mathematics problems requiring multi-step reasoning. We frame each problem as a sequen-
tial decision-making task with six reasoning operations (see Table [6] for action-specific prompts).
The state consists of the problem statement and accumulated reasoning chain, with GPT-40-mini
generating mathematical work for each action. Episodes terminate after 3 reasoning steps or upon
providing a final answer, with rewards of +1.0 for correct solutions and 0.0 otherwise. We eval-
uate on 500 test problems under a 100-hour budget per algorithm, reporting accuracy with 95%
confidence intervals, Q-value variance, and simulation efficiency.

VirtualHome Household Planning. VirtualHome (Puig et al.,2018)) provides a partially observable
3D household simulation with complex spatial reasoning and long-horizon planning tasks. Follow-
ing [Zhao et al.[ (2023, GPT-40-mini serves as a world model for commonsense knowledge, while
GPT-40 provides policy priors. The action space consists of primitive operations: navigation (walk
to, run to), manipulation (grab, put, open, close), and interaction (sit on, turn on). We evaluate
across three task categories: Novel Simple (123 tasks), Novel Objects (34 tasks), and Novel Com-
positional (23 tasks). We report success rate under a 100-hour budget per category.
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E.2 BASELINES

Table ] summarizes which baselines are evaluated in each domain.

Table 4: Baselines evaluated across experimental domains

Baseline Go Atari GSMSK VirtualHome
MCTS v v v v
DR v v v v
MCTS-IS v v v v
MaxMCTS v v v -
MENTS /BTS /DENTS vV v v -
AlphaZero-style v - - -
MCTS-DR + NN v - - -

E.3 HYPERPARAMETER CONFIGURATIONS

Table [5] provides complete hyperparameter specifications for all domains.

Table 5: Hyperparameter configuration for all experimental domains

Parameter 5x5Go Atari GSMSK VirtualHome
Evaluation Settings

Episodes/Problems 50 games 30 episodes 500 problems 180 tasks
Computational budget 30 hours 30 hours 100 hours 100 hours/category
Evaluation metrics Elo, winrate  Elo, winrate  Accuracy, Q-var, efficiency Success rate
Random seed 42 42 42 42
MCTS Parameters

Simulations per move 100 100 30 100
Maximum depth 10 10 3 10-15
PUCT exploration ¢ 1.414 1.414 2.0 2.0
Discount factor ~y 1.0 0.99 0.95 0.95
Hybrid Estimator Parameters

Base weight Spase 0.5 0.5 0.5 0.5
Decay parameter A 0.01 0.01 0.05 0.01
Cross-validation folds K 2 2 2 2
Policy Settings

Behavior policy Uniform Uniform Uniform LLM-guided
World model - - GPT-40-mini GPT-40-mini
Policy model - - - GPT-40

E.4 DOMAIN-SPECIFIC IMPLEMENTATION DETAILS

E.4.1 GSMB8K ACTION PROMPTS

E.4.2 VIRTUALHOME SETUP

Data generation. Following|Zhao et al.|(2023)), we create the evaluation dataset as follows:

* 2,000 training tasks with randomly initialized scenes and expert trajectories

* Oracle expert agent with full environment knowledge using regression planning
* 10,000 expert demonstrations for baseline training

* 200 instances randomly sampled for few-shot LLM prompting (no fine-tuning)

* 180 evaluation tasks across three complexity categories

Model configuration.
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Table 6: Action-specific prompts for GSM8K reasoning operations

Action Prompt

identify_key_information Identify and list the key numbers and relationships in this problem. What
information is given and what needs to be found?

set_up_equation Based on the information identified, set up the mathematical equation(s)
needed to solve this problem. Show the equation clearly.

perform_calculation Perform the necessary calculations step by step. Show your work clearly.

break_down_problem Break this problem into smaller, manageable sub-problems. List each sub-

problem that needs to be solved.

check_intermediate_result Check if the current calculations and reasoning make sense. Verify the in-
termediate results.

provide_final_answer Based on all the work above, provide the final numerical answer to the prob-
lem. State it clearly as a single number.

World Model (GPT-40-mini): Provides commonsense knowledge about household environments,
object locations, and state transitions

* Policy Model (GPT-40): Generates action proposals based on current observations and task goals
* Prompt selection: 3 most similar examples selected via instruction embedding similarity

* Action selection: Highest Q-value at root after 100 MCTS simulations
Task categories.

* Novel Simple (123 tasks): Familiar objects in new spatial configurations; 10-step limit
* Novel Objects (34 tasks): Unseen objects requiring commonsense reasoning; 10-step limit

* Novel Compositional (23 tasks): Multi-subtask sequences with dependencies; 15-step limit

F ABLATION STUDIES

F.1 WIN RATES AGAINST BASELINES

Table 7] reports head-to-head win rates of MCTS-DR-3* against each baseline across Go and Atari.

Table 7: Win rates of MCTS-DR-3* against baselines (100 rollouts). Results shown with Wilson
95% confidence intervals.

Domain Baseline Win Rate (%)
MCTS 100.0 [88.6, 100.0]
DR 100.0 [88.6, 100.0]

DENTS 100.0 [88.6, 100.0]
MaxMCTS  100.0 [88.6, 100.0]

Go BTS 93.3 [78.7, 98.2]
MENTS 90.0 [74.4, 96.5]
MCTS-IS 83.3[66.4, 92.7]
AlphaZero 70.0 [52.1, 83.3]
MCTS-IS 83.3[66.4,92.7]
DENTS 83.3[66.4, 92.7]
MaxMCTS  83.3[66.4, 92.7]
Atari MCTS 80.0 [62.7, 90.5]
MENTS 80.0 [62.7, 90.5]
DR 70.0 [52.1, 83.3]
BTS 66.7 [48.8, 80.8]

21



Preprint. Under review.

F.2 TARGET POLICY ABLATION
Table [8] compares alternative target policy formulations for the DR estimator. Softmax consistently

outperforms e-greedy, visit-based, and UCB-based alternatives.

Table 8: Target policy ablation on Go (100 rollouts). (a) Win rates of MCTS-DR-3* with softmax
target vs. alternatives. (b) Elo ratings.

(a) Win Rates (b) Elo Ratings
Target Policy Win Rate (%) Target Policy Elo
vs. e-greedy 100.0 [88.6, 100.0] Softmax (5*)  1906.2
vs. Visit-based ~ 100.0 [88.6, 100.0] e-greedy 1686.9
vs. UCB-based  100.0 [88.6, 100.0] Visit-based 1394.6

UCB-based 1012.3

F.3 VARIANCE-BASED VS. FALLBACK 3 USAGE
Table [9] shows how often MCTS-DR successfully computes the variance-minimizing 5* versus

falling back to the heuristic 5 = 0.5 due to insufficient samples. The higher fallback rate in Go
reflects its larger branching factor, which spreads visits more thinly across actions.

Table 9: Distribution of 5 computation methods across domains

Domain Variance-based 3* (%) Fallback (%)
Go 56.5 43.5
VirtualHome 88.8 11.2

G CODE AVAILABILITY AND LICENSE

We commiit to releasing our full implementation upon acceptance, which will include:

» Complete implementations of DR-MCTS, IS-MCTS, and baseline MCTS algorithms
» Environment wrappers for Go, Atari, GSM8K, and VirtualHome

* Reproduction scripts for all experiments

» Hyperparameter configurations and random seeds for reproducibility

* Detailed documentation and usage instructions

Our implementation builds upon the following open-source resources:

 Virtual[Home Environment: Based on Watch-and-HelIﬂ (CC BY-NC-SA 4.0 license) for train-
ing/test data generation

e LLM-MCTS Integration: Adapted from Zhao et al.’s codebaseE] (CCBY-NC-SA 4.0 license) for
LLM-guided tree search

All code will be released under the MIT license to facilitate broader adoption. We acknowledge that

our experiments utilized GPT-40 and GPT-40-mini APIs; users will need their own API credentials
to reproduce GSM8K and VirtualHome results.

G.1 REPRODUCIBILITY GUIDELINES

To reproduce our experiments:

"nttps://github.com/xavierpuigf/virtualhome/tree/master
https://github.com/1989Ryan/llm-mcts

22


https://github.com/xavierpuigf/virtualhome/tree/master
https://github.com/1989Ryan/llm-mcts

Preprint. Under review.

* 5 x 5 Go: Any modern CPU with at least IGB RAM

* GSMS8K: GPU GPU with minimum 16GB memory (A100 recommended for exact timing
replication)

* VirtualHome: GPU with minimum 16GB memory (A100 recommended for exact timing
replication)

* Software requirements: Python 3.8+, PyTorch 1.10+, and API access to GPT-40 and
GPT-40-mini

» Estimated total compute time:

— 5 X 5 Go: up to 30 hours for all experiments

Atari: up to 30 hours for all experiments

GSMSK: Up to 100 hours

VirtualHome: Up to 100 hours
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